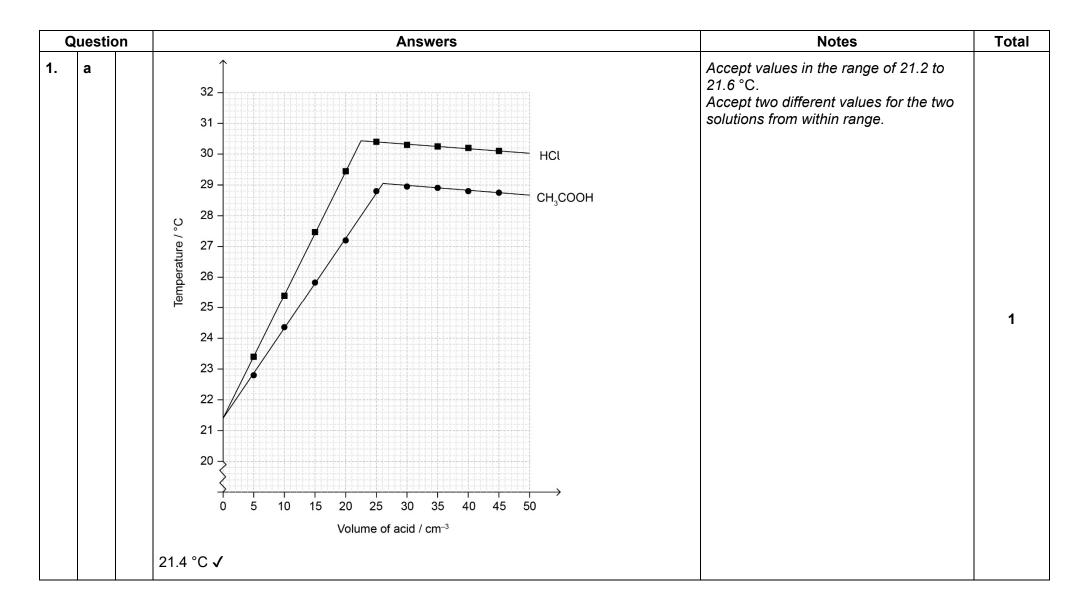
N17/4/CHEMI/HP2/ENG/TZ0/XX/M

Markscheme

November 2017

Chemistry


Higher level

Paper 2

19 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	b	b <i>HCI:</i> 30.4 «°C» ✓		Accept range 30.2 to 30.6 °C.	
			CH₃COOH: 29.0 «°C» √	Accept range 28.8 to 29.2 °C.	2
1.	C		ALTERNATIVE 1 «volume CH ₃ COOH =» 26.0 «cm ³ » \checkmark «[CH ₃ COOH] = 0.995 mol dm ⁻³ × $\frac{50.0 \text{ cm}^3}{26.0 \text{ cm}^3}$ =» 1.91 «mol dm ⁻³ » \checkmark ALTERNATIVE 2	Accept values of volume in range 25.5 to 26.5 cm ³ . Award [2] for correct final answer.	2
1.	d	i	«total volume = 50.0 + 26.0 =» 76.0 cm ³ AND «temperature change 29.0 − 21.4 =» 7.6 «°C» \checkmark «q = 0.0760 kg × 4.18 kJ kg ⁻¹ K ⁻¹ × 7.6 K =» 2.4 «kJ» \checkmark	Award [2] for correct final answer.	2

C	Questi	on	Answers	Notes	Total
1.	d	ii	« <i>n</i> (NaOH) = 0.995 mol dm ⁻³ × 0.0500 dm ³ =» 0.04975 «mol» <i>OR</i> « <i>n</i> (CH ₃ COOH) = 1.91 mol dm ⁻³ × 0.0260 dm ³ =» 0.04966 «mol» √		2
			« $\Delta H = -\frac{2.4 \text{ kJ}}{0.04975 \text{ mol}}$ =» −48 / −49 «kJ mol ⁻¹ » ✓	Award [2] for correct final answer. Negative sign is required for M2.	
1.	e		CH ₃ COOH is weak acid/partially ionised $✓$ energy used to ionize weak acid «before reaction with NaOH can occur» $✓$		2
1.	f	i	 «initially steep because» greatest concentration/number of particles at start OR «slope decreases because» concentration/number of particles decreases ✓ volume produced per unit time depends on frequency of collisions OR rate depends on frequency of collisions ✓ 		2
1.	f	ii	mass/amount/concentration of metal carbonate more in X OR concentration/amount of CH ₃ COOH more in X ✓		1

(Question		Answers	Notes	Total
2.	a		«series of» lines OR only certain frequencies/wavelengths ✓ convergence at high«er» frequency/energy/short«er» wavelength ✓	M1 and/or M2 may be shown on a diagram.	2
2. 2.	b		electron transfer/transition between high energy level to low erw energy level OR electron transitions into first energy level causes UV series OR transition into second energy level causes visible series OR transition into third energy level causes infrared series \checkmark $24 \times 0.786 + 25 \times 0.101 + 26 \times 0.113 \checkmark$ $24.33 \checkmark$	Accept any of the points shown on a diagram. Award [2] for correct final answer. Award [0] for 24.31 with no working (data booklet value).	1
2.	d	i	carbon: $\left(\frac{0.4490 \text{ g}}{44.01 \text{ gmol}^{-1}}\right) = 0.01020 \text{ (mol} / 0.1225 \text{ (g}))$ <i>OR</i> hydrogen: $\left(\frac{0.1840 \text{ g} \times 2}{18.02 \text{ gmol}^{-1}}\right) = 0.02042 \text{ (mol} / 0.0206 \text{ (g}))$ oxygen: $(0.1595 - (0.1225 + 0.0206)) = 0.0164 \text{ (g}) / 0.001025 \text{ (mol}))$ empirical formula: $C_{10}H_{20}O \checkmark$	Award [3] for correct final answer.	3

C	Questi	on	Answers	Notes	Total
2.	d	ii	OR	Award [1] for correct answer with no working shown. Accept "pV = nRT AND n = $\frac{m}{M}$ " for M1.	2
2.	d	iii	C ₁₀ H ₂₀ O ✓		1
2.	е	i	C_{I_2} : first \checkmark NO: second \checkmark		2
2.	е	ii	$rate = k [NO]^2 [Cl_2] \checkmark$		1
2.	е	iii	$180 / 1.80 \times 10^2 \text{ wdm}^6 \text{ mol}^{-2} \text{ min}^{-1} \text{ w } \checkmark$		1

C	Question	Answers	Notes	Total
3.	a	increasing number of protons <i>OR</i> increasing nuclear charge ✓ «atomic» radius/size decreases <i>OR</i> same number of shells <i>OR</i> similar shielding «by inner electrons» ✓ «greater energy needed to overcome increased attraction between nucleus and electrons»		2
3.	b	Any three of: Group 1: atomic/ionic radius increases √ smaller charge density OR force of attraction between metal ions and delocalised electrons decreases √ Group 17: number of electrons/surface area/molar mass increase √ London/dispersion/van der Waals'/vdw forces increase √	Do not accept discussion of attraction between valence electrons and nucleus for M2. Accept "weaker metallic bonds" for M2. Accept "atomic mass" for "molar mass".	3 max

C	Questi	ion	Answers	Notes	Total
3.	с		$P_4O_{10}\left(s\right) + 6H_2O\left(I\right) \to 4H_3PO_4\left(aq\right)\checkmark$	Accept " P_4O_{10} (s) + 2 H_2O (<i>I</i>) \rightarrow 4 $HPO_3(aq)$ " (initial reaction).	1
3.	d	i	«distorted» octahedral ✓	Accept "square bipyramid".	1
3.	d	ii	Charge on complex ion: $1+/+ \checkmark$ Oxidation state of cobalt: $+2 \checkmark$		2
3.	e		Lewis «acid-base reaction» ✓ H ₂ O: electron/e ⁻ pair donor <i>OR</i> Co ²⁺ : electron/e ⁻ pair acceptor ✓		2

(Question		Ans	swers	Notes	Total
4.	a	Lewis structure Molecular geometry Bond angles	PF_{3} $I = PF_{3}$ $I = I = I$ $I $	PF_{5} $\downarrow \downarrow $	Accept any combination of dots, crosses and lines. Penalize missing lone pairs once only. Do not apply ECF for molecular geometry. Accept values in the range 95–109 for PF ₃ .	6
4.	b	PF₃ polar AN	D PF₅ non-polar √		Apply ECF from part (a) molecular geometry.	1
4.	с	sp³ ✓				1

C	uestion	Answers	Notes	Total
5.	а	$\Delta H^{\ominus} = [-165.2 + 2(-296.9) + 2(-92.3)] - [-454.7 + 2(-245.7)] \checkmark$ $\ll \Delta H^{\ominus} = + \gg 2.5 \text{ ~~kJ} \gg \checkmark$	Award [2] for correct final answer. Award [1] for –2.5 «kJ». Do not accept ECF for M2 if more than one error in M1.	2
5.	b	« ΔS^{\ominus} = [208.5 + 2(248.1) + 2(186.8)] − [166.9 + 2(278.6)] » « ΔS^{\ominus} = +» 354.2 «J K ⁻¹ mol ⁻¹ » ✓		1
5.	с	«3 moles of» liquid to «4 moles of» gas <i>OR</i> «large» positive Δ <i>S</i> <i>OR</i> «large» increase in entropy √		2
		$T \Delta S > \Delta H$ «at the reaction temperature» \checkmark		

C	Questi	on		Answers	;		Notes	Total
6.	а	i	$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} \checkmark$					1
6.	а	ii	45.6 ✓					1
6.	а	iii	$\Delta G^{\ominus} = \mathbf{w} - RT \ln K = - (0.00)$	831 kJ K⁻¹ mol⁻¹ ×	761 K ×	In 45.6) =» – 24.2 «kJ» ✓		1
6.	а	iv		Effect		Reason	Award [1 max] if both effects are	
			Increasing the volume, at constant temperature	none/no effect	AND	same number of «gas» moles/molecules on both sides ✓	correct. Reason for increasing volume: Accept "concentration of all reagents	2
			Increasing the temperature, at constant pressure	moves to left	AND	«forward» reaction is exothermic √	reduced by an equal amount so cancels out in K _c expression". Accept "affects both forward and backward rates equally."	۷

(Questi	ion	Answers	Notes	Total
6.	b	i	HCO ₃ [−] AND H ₂ O √		1
6.	b ii species that has one less proton/ H^+ ion «than its conjugate acid» OR species that forms its conjugate acid by accepting a proton OR species that is formed when an acid donates a proton \checkmark		<i>OR</i> species that forms its conjugate acid by accepting a proton <i>OR</i>	Do not accept "differs by one proton/H ⁺ from conjugate acid".	1
6.	b	iii	oxide ion/O ^{2−} ✓		1
6.	С	i	$[H_{3}O^{+}] = 6.76 \times 10^{-5} \text{ (mol dm}^{-3} $	Accept 4.57 × 10 ⁻⁷ . Award [3] for correct final answer.	3
6.	c	ii			1

C	Juestic	on	Answers	Notes	Total
6.	d		insufficient data to make generalization		
			OR		
			need to consider «much» larger number of acids		
			OR		
			hypothesis will continue to be tested with new acids to see if it can stand the test of time \checkmark		
			«hypothesis is false as» other acids/HCI/HBr/HCN/transition metal ion/BF $_3$ do not contain oxygen		2 max
			OR		
			other acids/HCI/HBr/HCN/transition metal ion/BF $_3$ falsify hypothesis \checkmark		
			correct inductive reasoning «based on the limited sample» \checkmark		
			«hypothesis not valid» as it contradicts current/accepted theories/Brønsted-Lowry/Lewis theory \checkmark		

Q	Questi	on	Answers	Notes	Total
7.	а		$Ni(s) + I_2(aq) \rightarrow 2I^-(aq) + Ni^{2+}(aq) \checkmark$		1
7.	b		electron movement «in the wire» from Mn(s) to Ni(s) \checkmark		
			E^{\ominus} «for reduction» of Ni ²⁺ is greater/less negative than E^{\ominus} «for reduction» of Mn ²⁺		
			OR		2
			Ni ²⁺ is stronger oxidizing agent than Mn ²⁺		2
			OR		
			Mn is stronger reducing agent than Ni \checkmark		
7.	с		«0.54 V – (−1.18 V) = +»1.72 «V» ✓	Do not accept –1.72 V.	1
7.	d		Mn «(s)» ✓		1

Question	Answers	Notes	Total
7. e	Positive electrode (anode): 2Cl ⁻ (aq) \rightarrow Cl ₂ (g) + 2e ⁻ \checkmark	Accept ⇒.	
	CI ⁻ oxidized because higher concentration		
	OR		
	electrode potential/E depends on concentration		
	OR		
	electrode potential values «of H2O and CI $^{-}$ » are close \checkmark		
	Negative electrode (cathode):		
	$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$		4
	OR		4
	$2H^{+}(aq) + 2e^{-} ightarrow H_{2}(g) \checkmark$		
	H ₂ O/H ⁺ reduced because Na ⁺ is a weaker oxidizing agent		
	OR		
	Na ⁺ not reduced to Na in water		
	OR		
	H ⁺ easier to reduce than Na ⁺		
	OR		
	H lower in activity series «than Na» ✓		

C	Question		Answers		Notes	Total	
8.	а	i	oxidation/redox AND acidif OR oxidation/redox AND «acid			Accept "acidified «potassium» dichromate" OR "«acidified potassium» permanganate". Accept name or formula of the reagent(s).	1
8.	а	ii	ALTERNATIVE 1 using K2Cr2O7:				
			Compound A: orange to gro	een AND secondary hydro:	kyl	Award [1] for "A: orange to green AND B: no change".	
			Compound A: orange to gro	een AND hydroxyl oxidized	wby chromium(VI) ions» ✔	Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl".	
			Compound B: no change A ions» √		oxidized by chromium(VI)	Accept "alcohol" for "hydroxyl".	2
			ALTERNATIVE 2 using KN				
			Compound A: purple to color OR	ourless AND secondary hy	droxyl	Award [1] for "A: purple to colourless AND B: no change"	
			Compound A: purple to coli ions» ✓	ourless AND hydroxyl oxid	zed «by manganese(VII)	Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl".	
						Accept "purple to brown" for A.	
			Compound B: no change A ions» √	ND tertiary hydroxyl «not c			
8.	a	iii	Compound	Number of signals	Ratio of areas	Accept ratio of areas in any order.	
			A	5√	6:1:1:1:1 ✓	Do not apply ECF for ratios.	4
			В	4 ✓	6:1:1:2 ✓		

(Question 8a continued)

Question		ion	Answers	Notes	Total
8.	а	iv A <i>AND</i> it has a chiral centre/asymmetric carbon atom/carbon with 4 differe substituents ✓			
8.	a	v	HOOC A H H H C_3H_7 C_3H_7 H H H C_3H_7 C_3H_7 H	Accept structures without tapered bonds.	1
8.	b		Initiation: $Br_2 \xrightarrow{UV / hv / heat} 2Br \cdot \checkmark$ Propagation: $Br \cdot + C_2H_6 \rightarrow C_2H_5 \cdot + HBr \checkmark$ $C_2H_5 \cdot + Br_2 \rightarrow C_2H_5Br + Br \cdot \checkmark$ Termination: $Br \cdot + Br \cdot \rightarrow Br_2$ OR $C_2H_5 \cdot + Br \cdot \rightarrow C_2H_5Br$ OR $C_2H_5 \cdot + C_2H_5 \cdot \rightarrow C_4H_{10}\checkmark$	Reference to UV/hv/heat not required. Accept representation of radical without • (eg, Br, C₂H₅) if consistent throughout mechanism. Accept further bromination. Award [3 max] if initiation, propagation and termination are not stated or are incorrectly labelled for equations. Award [3 max] if methane is used instead of ethane, and/or chlorine is used instead of bromine.	4
8.	с		concentrated HNO ₃ <i>AND</i> concentrated H ₂ SO ₄ √	<i>"concentrated" must occur at least once (with either acid).</i>	1

Question		Answers	Notes	Total
8.	d $HNO_3 + 2H_2SO_4 \rightleftharpoons H_3O^+ + NO_2^+ + 2HSO_4^- \checkmark$	$HNO_3 + 2H_2SO_4 \rightleftharpoons H_3O^+ + NO_2^+ + 2HSO_4^- \checkmark$	Accept: $HNO_3 + H_2SO_4 \implies NO_2^+ + HSO_4^- + H_2O$	
			Accept: $HNO_3 + H_2SO_4 \implies H_2NO_3^+ + HSO_4^-$.	
			Accept single arrow instead of equilibrium sign.	1
			Accept equivalent two step reactions in which sulfuric acid first behaves as strong acid and protonates nitric acid, before behaving as dehydrating agent removing water from it.	
8. e	e	$H_{3}C \xrightarrow{CH_{3}}_{CH_{3}} H_{3}C \xrightarrow{CH_{3}}_{CH_{3}} H_{3}C \xrightarrow{CH_{3}}_{CH_{3}} H_{3}C \xrightarrow{CH_{3}}_{CH_{3}} H_{3}C \xrightarrow{CH_{3}}_{CH_{3}} OH + Br^{-}$		
		curly arrow showing Br⁻ leaving ✓	Do not accept curly arrow originating from C of C–Br bond.	
		representation of tertiary carbocation \checkmark curly arrow going from lone pair/negative charge on O in ⁻ OH to C ⁺ \checkmark		4
		formation of (CH₃)₃COH AND Br [−] ✓	Do not accept arrow originating on H in ⁻OH.	
			Accept Br [−] anywhere on product side in the reaction scheme.	
			Award [2 max] for an S _N 2 type mechanism.	